Карл Вейерштрасс
В первой половине XIX века математики начали задумываться над тем, что постулаты евклидовой геометрии не являются априори истинными и что отрицание этих постулатов, в особенности постулата о параллельности прямых, может привести к созданию принципиально новой геометрии, столь же корректной, как и геометрия Евклида. Это было продемонстрировано в работах Николая Ивановича Лобачевского (1792—1856) и Яноша Бойяи (1802—1860). Этого же мнения придерживался великий Гаусс, однако он действовал излишне осмотрительно и поделился своими идеями лишь с немногими соратниками, из-за чего принятие неевклидовой геометрии в научных кругах происходило не так быстро, как могло бы. Процесс создания неевклидовой геометрии завершил Бернхард Риман (1826—1866). Риман в своем докладе «О гипотезах, лежащих в основании геометрии», который он сделал 10 июня 1854 года с целью получить пост преподавателя в Гёттингенском университете, представил общую теорию геометрии, простиравшуюся намного дальше, чем частные случаи, описанные Лобачевским и Бойяи, которые были получены отрицанием постулата о параллельности прямых. Риман сделал основой своей геометрии утверждение, над которым другие математики размышляли в течение 50 лет: постулат о параллельности, равно как и любой другой постулат евклидовой геометрии, не является априори истинным в абсолютном пространстве, а, напротив, представляет собой эмпирический результат, полученный в процессе наблюдения той небольшой части пространства, что нас окружает. Спустя некоторое время после смерти Гаусса была опубликована его частная переписка, где он восхвалял новую геометрию предшественников Римана — Лобачевского и Бойяи. Если бы кто-то узнал о том, какой интерес и энтузиазм проявлял великий Гаусс по отношению к неевклидовой геометрии, это стало бы решающим толчком к ее широкому принятию.
Как следствие, это серьезно повлияло бы на вопросы, связанные с математической и логической строгостью. Корректность этих результатов, не проверенных эмпирическим путем, а доказанных строгими геометрическими рассуждениями, оставалась под сомнением. Таким образом, геометрия Евклида перестала быть неэмпирической дисциплиной, на основе которой с математической строгостью строились другие разделы математики. Ее место быстро заняла арифметика — раздел математики, изучающий числа и их свойства.
В этом смысле Карл Вейерштрасс (1815—1897) пересмотрел определение предела Коши и убрал из него геометрические элементы, в частности формулировки «бесконечно приближаются», «бесконечно уменьшаются» и «меньше любой заданной величины», заменив их арифметическими выражениями, в которых фигурировали величины эпсилон и дельта, используемые и сейчас: «Предел функции f(х) равен 1, когда x стремится к а, если для любого положительного ε > 0 существует другое положительное число δ > 0 такое, что для любой точки x, в которой определена данная функция, выполняется неравенство 0 < |f(x) — 1| < ε.
С конца 1850-х до конца 1880-х годов Вейерштрасс преподавал в Берлинском университете. Он не публиковал свои лекции, и данные им определения дошли до нас из конспектов его учеников. Начиная со второй половины XIX века Германия постепенно становилась мировым математическим центром, придя на смену Франции, что способствовало эффективному распространению анализа Вейерштрасса.
Заключение
Начиная с Эйлера и в особенности после того, как усилиями Коши и Вейерштрасса был выстроен фундамент анализа бесконечно малых, эта дисциплина стала ядром математического анализа. Функции, пределы, производные и интегралы — фундаментальные инструменты математического анализа. С их помощью великое множество физических, технических, экономических и даже медицинских задач можно свести к уравнениям, где будут одновременно использоваться функции, их производные и интегралы. Так, задачи поиска оптимальной формы крыла самолета, определения кровяного давления в венах и артериях организма или выявления роста раковых опухолей решаются с помощью уравнений такого типа.
Эти уравнения формулируются с использованием понятий математического анализа, в том числе анализа функций нескольких переменных, а также законов физики. Однако составить такие уравнения — это одно, а уметь решать их — совсем другое. Решения некоторых подобных уравнений были однозначно определены, уже когда Ньютон и Лейбниц создали анализ бесконечно малых, однако большинство из них настолько сложны, что и сегодня не существует способов их точного решения. Математический анализ также описывает методы приближенного и численного решения подобных уравнений, позволяющие найти их корни с определенной точностью. С появлением современных компьютеров в середине XX века в этой области математического анализа произошла революция.
Обычные люди, как правило, удивляются, когда слышат, что математики до сих пор совершают новые открытия. В действительности же их число с каждым годом увеличивается экспоненциально. Когда кто-то говорит, что занимается работами в новой области математики, несведущие задают вопрос: «А разве в ней еще не все известно?» Разумеется, это не так. Нам неизвестно множество уравнений, описывающих загадки природы, решение которых будет способствовать прогрессу человечества. Технологический прогресс и развитие медицинских и экономических методов ставят перед учеными новые задачи, и математикам ежедневно приходится их решать.
Эта книга начинается с фразы: «Анализ бесконечно малых, вне всяких сомнений, наиболее мощное и эффективное средство изучения природы, когда-либо созданное математиками». Однако наука ставит перед нами столько задач, что в математическом анализе, пришедшем на смену анализу бесконечно малых, непрерывно требуется разрабатывать новые техники и приемы их решения.
Приложение.
Эйлер и бесконечно малые
Чтобы показать, как используются бесконечно большие и малые величины, приведем пример разложения функции ez в степенной ряд. Этот пример продемонстрирован Эйлером в книге «Введение в анализ бесконечно малых». Сначала Эйлер определяет число е следующим образом. Показательные функции аz, а > 1, описывают множество кривых, которые имеют общую точку (0, 1). Угол наклона касательной к этим кривым в этой точке зависит, разумеется, от основания степени а и бесконечно возрастает от 0, соответствующего а = 1. Число е определяется как число, для которого тангенс угла наклона касательной ez в точке (0,1) равен 1. Иными словами, касательная к кривой е2 в точке (0, 1) описывается уравнением 1 + z. Так как Эйлер понимал кривые как многоугольники со сторонами, имеющими бесконечно малую длину, это означает, что бесконечно малый отрезок кривой у = ez, находящийся в точке с координатами (0,1), что соответствует е0 = 1, совпадает с прямой у = 1 + z. Для бесконечно малых чисел w получим, что они находятся одновременно на прямой и на кривой, которые совпадают на этом бесконечно малом участке. Таким образом, для бесконечно малого w выполняется равенство ew = 1 + w. Для Эйлера это было не приближенное, а строгое равенство.
С учетом этого будем записывать данное число z в виде произведения бесконечно малого числа w на бесконечно большое число N:z = wN. Допустим, что z = 2, и запишем его в следующем виде
Таким образом,